Digital Logic and Representation

J.R. Leeman and C. Marone

Techniques of Geoscientific Experimentation

September 20, 2016

The way we think of and store numbers and do logic is much different than how computers do

In digital logic there are two states

In reality we have to define ranges of voltages that represent high

 and low states

In reality we have to define ranges of voltages that represent high and low states

3.3 V Logic Families

In reality we have to define ranges of voltages that represent high

 and low states
?

ATMega328
DC Characteristics

Often we find the need to shift between these logic levels, which

 can be accomplished with a variety of techniques

To choose a resistance value for R 1 , consider the following equation:

$$
\text { Minimum Resistance } R 1=\frac{\mid \text { Signal Maximum } \Delta V \mid}{\text { Maximum allowed ESD diode current }}
$$

Pins are often marked as active low or active high

SN54HC165, SN74HC165
www.ti.com

8-BIT PARALLEL-LOAD SHIFT REGISTERS

There are a few digital logic operations that make up all of how we do computing with binary information

We show the way each operation works with a truth table

NOT gates invert the input

Written

$\overline{\mathrm{A}}$
A^{\prime}

AND gates are only true if both inputs are true

OR gates are only true if either or both inputs are true

Written
 $A+B$

XOR gates are only true if either input is true

Written

$\mathrm{A} \oplus \mathrm{B}$

NOR gates are only true if neither input is true

Written

$$
\begin{aligned}
& \overline{(\mathrm{A}+\mathrm{B})} \\
& (\mathrm{A}+\mathrm{B})^{\prime}
\end{aligned}
$$

NAND gates are true unless both inputs are true

Written
$\overline{(\mathrm{AB})}$
$(\mathrm{A} \bullet \mathrm{B})^{\prime}$
$(\mathrm{AB})^{\prime}$

We can connect these logic gates together to perform calculations and other functions in a combinatorial logic circuit

Activity: Fill out the truth table and write an expression for the output of this combinatorial circuit

Activity: Fill out the truth table and write an expression for the output of this combinatorial circuit

We can also make a sequential circuit that uses memory and

 (generally) a clock signal

D type flip-flops latch the input to the outputs on a clock

T flip-flops toggle the output if T and do nothing if not T

JK flip-flops can set, clear, or toggle their outputs

We can perform logic operations in software as well

```
1 byte a = b01010101;
zbyte b = b10101010;
з byte c;
4
5c = a & b; // bitwise AND-ing of a and b; the result is b00000000
6c = a | b; // bitwise OR-ing of a and b; the result is b11111111
7c = a ^ b; // bitwise XOR-ing of a and b; the result is b11111111
8c = ~a; // bitwise complement of a; the result is b10101010
```


We use such operations to manipulate data when working with registers for example

```
1byte a = b01010101;
2byte b = b10101010;
з byte c;
5c = b00001111 & a; // clear the high nibble of a, but leave the low nibble alone.
    // the result is b00000101.
7c = b11110000 | a; // set the high nibble of a, but leave the low nibble alone.
    // the result is b11110101.
gc = b11110000 ^ a; // toggle all the bits in the high nibble of a.
    // the result is b10100101.
```


We also often bit shift values to "roll" them

```
1 byte d = b11010110;
zbyte e = d>>2; // right-shift d by two positions; e = b00110101
зe = e<<3; // left-shift e by three positions; e = b10101000
```

Let's learn how to translate binary numbers into base 10 representations

Let's learn how to translate binary numbers into base 10

 representations| \mathbf{A}_{7} | \mathbf{A}_{6} | \mathbf{A}_{5} | \mathbf{A}_{4} | \mathbf{A}_{3} | \mathbf{A}_{2} | \mathbf{A}_{1} | \mathbf{A}_{0} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
| 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |

Let's learn how to translate binary numbers into base 10 representations

\mathbf{A}_{7}	\mathbf{A}_{6}	\mathbf{A}_{5}	\mathbf{A}_{4}	\mathbf{A}_{3}	$\mathbf{A}_{\mathbf{2}}$	\mathbf{A}_{1}	\mathbf{A}_{0}
128	64	32	16	8	4	2	1
0	1	0	1	1	0	1	1
0	64	0	16	8	0	2	1

Let's learn how to translate binary numbers into base 10 representations

\mathbf{A}_{7}	\mathbf{A}_{6}	\mathbf{A}_{5}	\mathbf{A}_{4}	\mathbf{A}_{3}	$\mathbf{A}_{\mathbf{2}}$	\mathbf{A}_{1}	\mathbf{A}_{0}
128	64	32	16	8	4	2	1
0	1	0	1	1	0	1	1
0	64	0	16	8	0	2	1

The most significant bit can be first or last, we just have to agree and know what was done

Endianness gets its name from Swift's Gulliver's Travels

BIG ENDIAN - The way people always broke their eggs in the Lilliput land

LITTLE ENDIAN - The way the king then ordered the people to break their eggs

We've explored base 10 and base 2, but what if we want more than 0-9? Base 16!

$0,1,2,3,4,5,6,7$, 8, 9, A, B, C, D, E, F

Counting is a bit strange since we're used to base 10

| Decimal Hexadecimal... | Decimal Hexadecimal | | |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 8 | 8 |
| 1 | 1 | 9 | 9 |
| 2 | 2 | 10 | A |
| 3 | 3 | 11 | B |
| 4 | 4 | 12 | C |
| 5 | 5 | 13 | D |
| 6 | 6 | 14 | E |
| 7 | 7 | 15 | F |

Counting is a bit strange since we're used to base 10

Decimal	Hexadecimal...	Decimal	Hexadecimal
16	10	24	18
17	11	25	19
18	12	26	1 A
19	13	27	1 B
20	14	28	1 C
21	15	29	1 D
22	16	30	1 E
23	17	31	1 F

Let's convert the decimal number 48879 to hex

$$
\begin{array}{ll}
48879 / 16=3054 \mathrm{R} 15 & >\mathrm{F} \\
3054 / 16=190 \mathrm{R} 14 & >\mathrm{EF} \\
190 / 16=11 \mathrm{R} 14 & >\mathrm{EEF} \\
11 / 16=0 \mathrm{R} 11 & >\mathrm{BEEF}
\end{array}
$$

Converting to binary is a powers of 16 problem

Converting from binary is done by grouping into bunches of 4

Binary: 1011111011101111 Binary: 1011 | 1110 | 1110 | 1111 Decimal: 11|14|14|15 HEX: BIEIEIF

You'll see all of these formats written in a variety of ways

Two's complement lets us represent negative numbers

8-bit

uint8_t
 0 to 255

int8_t
-128 to 127

Converting to two's compliment is "simple"

1. Write out the number in binary
 2. Invert all of the digits
 3. Add one to the result

Write the number -42

1. Write out the number in binary
2. Invert all of the digits
3. Add one to the result

$42=2+8+32$ 0010_1010

Write the number - 42

Write out the number in binary

2. Invert all of the digits

Add one to the result

0010_1010

1101_0101

Write the number -42

1. Write out the number in binary
2. Invert all of the digits
3. Add one to the result

1101_0101
 1101_0110

Floating point is expensive, but useful

Single-Precision

sign * $2^{\text {exponent * }}$ mantissa
In this example:

- $\operatorname{sign}=b_{31}=0$
- $(-1)^{\text {sign }}=(-1)^{0}=+1 \in\{-1,+1\}$
- $e=b_{30} b_{29} \ldots b_{23}=\sum_{i=0}^{7} b_{23+i} 2^{+i}=124 \in\left\{1, \ldots,\left(2^{8}-1\right)-1\right\}=\{1, \ldots, 254\}$
- $2^{(e-127)}=2^{124-127}=2^{-3} \in\left\{2^{-126}, \ldots, 2^{127}\right\}$
- $1 . b_{22} b_{21} \ldots b_{0}=1+\sum_{i=1}^{23} b_{23-i} 2^{-i}=1+1 \cdot 2^{-2}=1.25 \in\left\{1,1+2^{-23}, \ldots, 2-2^{-23}\right\} \subset\left[1 ; 2-2^{-23}\right] \subset[1 ; 2)$
thus:
- value $=(+1) \times 1.25 \times 2^{-3}=+0.15625$

Not all representations are exact and can accumulate error

Double-Precision

Decimal Number: 0.1
Single Precision: 0x3DCCCCCD
Cast to Double: 0.10000000149011612
$1 e 6$ * 0.1 (cast to double) $=100000.00149011612$

Assignment: Digital Representation

DUE: 9/27/16

