Digital Logic and Representation

J.R. Leeman and C. Marone

Techniques of Geoscientific
Experimentation

September 20, 2016

The way we think of and store numbers and do logic is much
different than how computers do

ON ASCALEOF 1o 10,
HOW LIKELY IS IT THAT
THIS QUESTON IS
USING BINARY?

{ 47
WA\T‘S AY?)

XKCD.com

http://xkcd.com

In digital logic there are two states

High | ow

Image: bobvila.com

http://bobvila.com

In reality we have to define ranges of voltages that represent high

and low states

5V Vee

High

2V == Vy

0.8V V,

0.4V Vo LOW

oV GND
Standard5V TTL

Image: sparkfun.com

http://sparkfun.com

In reality we have to define ranges of voltages that represent high

and low states

3.3V Vee
2.4V Vo
2V Vi
0.8V V,,
0.5V VoL
oV GND

3.3 V Logic Families

(based on 74LVT04 Hex Inverter)

High

Low

Image: sparkfun.com

http://sparkfun.com

In reality we have to define ranges of voltages that represent high

and low states

5V Ve

4.2V Vo

3V = Vi

15V N V,
09V Voo

oV GND

ATMega328
DC Characteristics

High

Low

Image: sparkfun.com

http://sparkfun.com

Often we find the need to shift between these logic levels, which
can be accomplished with a variety of techniques

R1

{ PROPELLER I/0 > VAYAY { SIGNAL »

To choose a resistance value for R1, consider the following equation:

|Signal Maximum A V|

Minimum Resistance R1 = - .
Maximum allowed ESD diode current

Images: sparkfun.com, parallax.com

http://sparkfun.com
http://parallax.com

Pins are often marked as active low or active high

I3 TEXAS

INSTRUMENTS SN54HC165, SN74HC165

8-BIT PARALLEL-LOAD SHIFT REGISTERS

Check for Samples: SN54HC165, SN74HC165
SH/LD |] 1

15|] CLK INH

Active Low \A Ve Hiah
Pull Low to Activate Ctive Hig

Pull High to Activate

There are a few digital logic operations that make up all of how we

do computing with binary information

A
- | OR
A

2 | NOR

A
B

AND

A
B

NAND

Q

A
j%

XOR

NODOA-

Image: sparkfun.com

http://sparkfun.com

We show the way each operation works with a truth table

A

Qutput Output

Qutput Output

NOT gates invert the input

Written

A
A/

NOT

pd

Image

: sparkfun.com

http://sparkfun.com

AND gates are only true if both inputs are true

Written

AB
AeB

Image

: sparkfun.com

http://sparkfun.com

OR gates are only true if either or both inputs are true

Written

A

B

Image

: sparkfun.com

http://sparkfun.com

XOR gates are only true if either input is true

Written

Ac¢

> B

Image

: sparkfun.com

http://sparkfun.com

NOR gates are only true if neither input is true

Written

(A + B)
(A + B)’

Image:

sparkfun.com

http://sparkfun.com

NAND gates are true unless both inputs are true

Written

(AB) 0 1
(A eB)

(AB) (I

Image: sparkfun.com

http://sparkfun.com

We can connect these logic gates together to perform calculations
and other functions in a combinatorial logic circuit

O— (A+B+C)*D

Image: sparkfun.com

http://sparkfun.com

Activity: Fill out the truth table and write an expression for the
output of this combinatorial circuit

D

AND

AB

00

01

10

11

00

01

CD

10

11

Image: sparkfun.com

http://sparkfun.com

Activity: Fill out the truth table and write an expression for the
output of this combinatorial circuit

AB
00 | O1 | 10 | 11

A 00| O 1 1 T
B b
01 O 1 1 T
CD
10 O l 1 1

1) 1 0 0 0

Image: sparkfun.com

http://sparkfun.com

We can also make a sequential circuit that uses memory and
(generally) a clock signal

Input ™| Combinational - Output
- logic circuit
Storage |
elements .

Image: c-jump.com

http://c-jump.com

D type flip-flops latch the input to the outputs on a clock

Image: sparkfun.com

http://sparkfun.com

T flip-flops toggle the output if T and do nothing if not T

Image: sparkfun.com

http://sparkfun.com

JK flip-flops can set, clear, or toggle their outputs

http://sparkfun.com

We can perform logic operations in software as well

1byte a = b01010101;

»byte b = b10101010;

3sbyte c;

sc =a & b; // bitwise AND-ing of a and b; the result i1s b0000000O
sc=a | b; // bitwise OR-ing of a and b; the result 1s b11111111
7¢c =a AN b; // bitwise XOR-1ing of a and b; the result 1s b11111111

sC = ~a; // bitwise complement of a; the result is bl10101010

We use such operations to manipulate data when working with
registers for example

1byte a = b01010101;
»byte b = bl0101010;

3byte c;

sC = b000A1111 & a; // clear the high nibble of a, but leave the low nibble alone.
6 // the result i1s b00000101.

7C = b11110000 | a; // set the high nibble of a, but leave the low nibble alone.

g // the result 1s bl11110101.

oCc = b11110000 N a; // toggle all the bits in the high nibble of a.

10 // the result 1s bl0100101.

We also often bit shift values to “roll” them

1byte d = b11010110;
»byte e = d>>2; // right-shift d by two p051t10ns = b00110101
e = e<<3; // 1eft shift e by three positions; bl@l@l@@@

Let’s learn how to translate binary numbers into base 10
representations

Let’s learn how to translate binary numbers into base 10
representations

Let’s learn how to translate binary numbers into base 10
representations

Let’s learn how to translate binary numbers into base 10
representations

128 64 32 16 8 4 2 1
0 1 0 1 1 0 1 1
0 64 0 16 8 0 2 1

91

The most significant bit can be first or last, we just have to agree

and know what was done

Big Endian
= 0x64 =100

Little Endian
= 0x26 = 38

Image: users.cis.fiu.edu

http://users.cis.fiu.edu

Endianness gets its name from Swift’s Gulliver’s Travels

BIG ENDIAN - The way LITTLE ENDIAN - The
people always broke way the king then
their eggs in the ordered the people to
Lilliput land break their eggs

Image: flickeringtubelight.com

http://flickeringtubelight.com

We've explored base 10 and base 2, but what if we want more
than 0-9? Base 16!

Ol 1I 2) 3) 4l 5’ 6’ 7I
8,9 AUB,C,D,EF

http://sparkfun.com

Counting is a bit strange since we’re used to base 10

|Decima| Hexadecimal... DecimalHexadecimal

0

~N OO O A WO NN =

0

~N OO O B WO N =

8
9
10
11
12
13
14
15

8

9
A
B
C
D
E
F

Image: sparkfun.com

http://sparkfun.com

Counting is a bit strange since we’re used to base 10

|Decima| Hexadecimal... DecimalHexadecimal

16
17
18
19
20
21
22
23

10
11
12
13
14
19
16
17

24
25
26
27
28
29
30
31

18
19
1A
1B
1C
1D
1E
1F

Image: sparkfun.com

http://sparkfun.com

Let’s convert the decimal number 48879 to hex

48879/16 = 3054 R 15 > F
3054/16 =190 R 14 > EF
190/16 =11 R 14 > EEF

11/16 =0 R 11 > BEEF

Converting to binary is a powers of 16 problem

167

268435456

166

16777216

16°

1048576

164

65530

163

4096

162

206

16

106

169

Converting from binary is done by grouping into bunches of 4

Binary: 1011111011101111
Binary: 1011 1 11101 1110 | 1111
Decimal: 11114114 [15
HEX:BIEIEIF

You’ll see all of these formats written in a variety of ways

Hex Binar
OxBEEF Opb01110100
#FF7454 %01110100
%20 %0111 0100
\X1B
#BD
OnBEEF
BEEF 16

BEEFhex

Two’s complement lets us represent negative numbers

uint8_t 0 to 255

INt8 t -128 to 127

Converting to two’s compliment is “simple”

1. Write out the number in binary
2. Invert all of the digits
3. Add one to the result

Write the number -42

1. Write out the number in binary

42 =2 + 8 + 32
0010_1010

Write the number -42

2. Invert all of the digits

0010_1010

1101_0101

Write the number -42

3. Add one to the result

1101_0101

1101_0110

Floating point is expensive, but useful

sign exponent (8 bits)
| |

Single-Precision

fraction (23 hits)

l

olojojojojojol = 0.15625

E|o11111oo|01 olololololololo]olo
31 30 2322 (bit index) 0

In this example:

o sign =bg; =0

(DT =(T1)" = 41 € {-1,+1}

7
o e=byby...byy = Y byy2" =124 {1,...,(2° —1) -1} ={1,...
i=0 o

. 2(6—127) — 2124—127 — 2—3 € {2—126, . ,2127}

thus:

e value = (+1) x 1.25 x 27° = +

!2%*&
o« Lbypby...by=1+) by 2 =1+1.2"2=

=1

0.15625

[t es s n ea

125 € {1,1+27%,...

LD

sign ™ 2exponent * mantissa

,254}

,2—2"%} c [1;2-2"%] C[1;2)

Image: wikipedia.com

http://wikipedia.com

Not all representations are exact and can accumulate error

Double-Precision

exponent fraction
sign (11 bit) (52 bit)
[[|

O
O
o 0

Decimal Number: 0.1
Single Precision: 0x3DCCCCCD
Cast to Double: 0.10000000149011612

1e6 * 0.1 (cast to double) = 100000.00149011612

Image: wikipedia.com

http://wikipedia.com

Assignment: Digital Representation

DUE: 9/27/16

