Transducers

J.R. Leeman and C. Marone

Techniques of Geoscientific Experimentation

October 18, 2016

Transducers are devices that convert one form of energy to another - we commonly use them as real-world interfaces

Transducer Selection

When selecting a transducer, you must have a well defined application and consider a number of variables

- Range
- Linearity
- Sensitivity
- Response Time
- Stability
- Accuracy
- Durability
- Cost
- Signal Conditioning

Range is the span of values over which the transducer is rated to perform at

	Elite Series Best Performance Modular Design		CPL230 Great Performance Compact Multi	CPL350 Great Performance Compact Single	CPA100 Analog Proximity Lower Cost	
	CPL490	CPL190/290				
Ranges	10-200 µm	10 µm to 12.5 mm	10 µm to 12.5 mm	10 µm to 12.5 mm	50 µm to 12.5 mm	
Typical Resolution* @ 15 kHz	0.0007% F.S.*	0.003% F.S.*	0.004% F.S.*	0.004% F.S.*	0.03% F.S.*	
Typical Linearity*	0.2%	0.2%	0.5%	0.5%	Nonlinear	
Max Bandwidth	50 kHz	15 kHz	15 kHz	15 kHz	15 kHz	
Zero/Offset Adjust	Yes	Yes	No	No	Yes	
Gain Adjust	No	No	No	No	Yes	
Setpoint/Switch Output	No	No	No	No	Yes	
Typical Thermal Drift*	0.02% F.S./ °C	0.04% F.S./°C	0.04% F.S./°C	0.04% F.S./°C	Driver: 0.2% F.S./°C Probe: 0.05% F.S./°C	
LED Range Indicator	Yes	Yes	No	No	Yes	
Cost	\$\$\$\$	\$\$\$	\$\$	\$\$	\$	
Other Features	Optional Signal Processing and Meter Module Easy DAQ connection		Embeddable/OEM Design	Embeddable/OEM Design	Remote Zero and Gain Setpoint/Switch output	

Linearity is how much the sensor diverges from an ideal linear sensor output

npar

Image: dataforth.com

Linearity is how much the sensor diverges from an ideal linear sensor output

Image: dataforth.com

Sensitivity is the slope of the output - input curve

Response time is how long the transducer takes to register a change in the physical quantity

Stability is how constant the output of a transducer remains when the physical stimulus is static

Precision refers to the reproducibility of a given measurement

Accuracy is the maximum difference between the real and indicated values

Durability is how rugged the transducer is to the measurement environment it will be exposed to

Signal conditioning requirements can greatly impact the ease of use and cost of a given transducer

Offset refers to a DC bias is a given transducer's output

Hysteresis is the transducer's sensitivity to which direction (up/ down) the physical quantity is changing

Dynamic linearity describes how well a transducer's output can follow a rapidly changing quantity

Image: Wikipedia

Temperature

Advantages	Disadvantages		
 ✓ Simple ✓ Rugged ✓ Inexpensive ✓ No external power ✓ Wide temperature range ✓ Variety of styles 	 × Nonlinear response × Small sensitivity × Small output voltage × Requires CJC × Least stable 		
 ✓ Most stable ✓ Good Linearity ✓ Most accurate 	 × Low sensitivity × Externally powered × Costly × Small output resistance × Self-heating error 		
 ✓ Fast ✓ High output ✓ Minimal lead resistance error 	 × Limited temperature range × Externally powered × Nonlinear × More fragile × Self-heating error 		

Each type of temperature sensor has a different output curve

Image: National Instruments

Thermocouples work on a principle called the Seebeck effect

Two dissimilar metals are joined to make a transducer

There are many metal combinations or types of thermocouples

Common Thermocouple Temperature Ranges						
Calibration	Temperature	Standard Limits	Special Limits			
	Range	of Error	of Error			
J	0° to 750°C	Greater of 2.2°C	Greater of 1.1°C			
	(32° to 1382°F)	or 0.75%	or 0.4%			
K	-200° to 1250°C	Greater of 2.2°C	Greater of 1.1°C			
	(-328° to 2282°F)	or 0.75%	or 0.4%			
E	-200° to 900°C	Greater of 1.7°C	Greater of 1.0°C			
	(-328° to 1652°F)	or 0.5%	or 0.4%			
т	-250° to 350°C	Greater of 1.0°C	Greater of 0.5°C			
	(-328° to 662°F)	or 0.75%	or 0.4%			

The challenge is unintentional junctions in the system

Image: Wikipedia

The challenge is unintentional junctions in the system

We measure the temperature of the "cold junction" and compensate for it with NIST tables

°C

0

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

ITS-90 Table for type K thermocouple °C 0 -1 -2 -3 -5 -6 -9 -10-4 -7 -8 Thermoelectric Voltage in mV -270 - 6.458-260 -6.441 -6.444 -6.446 -6.448 -6.450 -6.452 -6.453 -6.455 -6.456 -6.457 -6.458 -250 -6.404 -6.408 -6.413 -6.417 -6.421 -6.425 -6.429 -6.432 -6.435 -6.438 -6.441 -240 -6.344 -6.351 -6.358 -6.364 -6.370 -6.377 -6.382 -6.388 -6.393 -6.399 -6.404 -230 -6.262 -6.271 -6.280 -6.289 -6.297 -6.306 -6.314 -6.322 -6.329 -6.337 -6.344 -220 -6.158 -6.170 -6.181 -6.192 -6.202 -6.213 -6.223 -6.233 -6.243 -6.252 -6.262 -210 -6.035 -6.048 -6.061 -6.074 -6.087 -6.099 -6.111 -6.123 -6.135 -6.147 -6.158 -200 -5.891 -5.907 -5.922 -5.936 -5.951 -5.965 -5.980 -5.994 -6.007 -6.021 -6.035 -190 -5.730 -5.747 -5.763 -5.780 -5.797 -5.813 -5.829 -5.845 -5.861 -5.876 -5.891 -180 -5.550 -5.569 -5.588 -5.606 -5.624 -5.642 -5.660 -5.678 -5.695 -5.713 -5.730 -170 -5.354 -5.374 -5.395 -5.415 -5.435 -5.454 -5.474 -5.493 -5.512 -5.531 -5.550 -160 -5.141 -5.163 -5.185 -5.207 -5.228 -5.250 -5.271 -5.292 -5.313 -5.333 -5.354 -150 -4.913 -4.936 -4.960 -4.983 -5.006 -5.029 -5.052 -5.074 -5.097 -5.119 -5.141 -140 -4.669 -4.694 -4.719 -4.744 -4.768 -4.793 -4.817 -4.841 -4.865 -4.889 -4.913-130 -4.411 -4.437 -4.463 -4.490 -4.516 -4.542 -4.567 -4.593 -4.618 -4.644 -4.669 -120 -4.138 -4.166 -4.194 -4.221 -4.249 -4.276 -4.303 -4.330 -4.357 -4.384 -4.411 -110 -3.852 -3.882 -3.911 -3.939 -3.968 -3.997 -4.025 -4.054 -4.082 -4.110 -4.138 -100 -3.554 -3.584 -3.614 -3.645 -3.675 -3.705 -3.734 -3.764 -3.794 -3.823 -3.852 -90 -3.243 -3.274 -3.306 -3.337 -3.368 -3.400 -3.431 -3.462 -3.492 -3.523 -3.554 -80 -2.920 -2.953 -2.986 -3.018 -3.050 -3.083 -3.115 -3.147 -3.179 -3.211 -3.243 -70 -2.587 -2.620 -2.654 -2.688 -2.721 -2.755 -2.788 -2.821 -2.854 -2.887 -2.920 -60 -2.243 -2.278 -2.312 -2.347 -2.382 -2.416 -2.450 -2.485 -2.519 -2.553 -2.587 -50 -1.889 -1.925 -1.961 -1.996 -2.032 -2.067 -2.103 -2.138 -2.173 -2.208 -2.243 -40 -1.527 -1.564 -1.600 -1.637 -1.673 -1.709 -1.745 -1.782 -1.818 -1.854 -1.889-30 -1.156 -1.194 -1.231 -1.268 -1.305 -1.343 -1.380 -1.417 -1.453 -1.490 -1.527 -20 -0.778 -0.816 -0.854 -0.892 -0.930 -0.968 -1.006 -1.043 -1.081 -1.119 -1.156 -10 -0.392 -0.431 -0.470 -0.508 -0.547 -0.586 -0.624 -0.663 -0.701 -0.739 -0.778 0 0.000 -0.039 -0.079 -0.118 -0.157 -0.197 -0.236 -0.275 -0.314 -0.353 -0.392

Or use a high order polynomial fit

Type K Thermocouples - coefficients of approximate inverse functions giving temperature, t_{90} , as a function of the thermoelectric voltage, *E*, in selected temperature and voltage ranges. The functions are of the form:

$$t_{90} = C_0 + C_1 E + C_2 E^2 \quad C_i E^2$$

where *E* is in microvolts and t_{90} is in degrees Celsius.

Temperature Range:	-200 to 0°C	0 to 500°C	500 to 1,372°C	
Voltage Range:	-5891 to 0 μV	0 to 20,644 μV	20,644 to 54,886 μV	
$C_0 = C_1 = C_2 = C_3 = C_4 = C_5 = C_7 = C_8 = C_9 $	0.000 000 0 2.517 346 2 x 10^{-2} -1.166 287 8 x 10^{-6} -1.083 363 8 x 10^{-9} -8.977 354 0 x 10^{-13} -3.734 237 7 x 10^{-16} -8.663 264 3 x 10^{-20} -1.045 059 8 x 10^{-23} -5.192 057 7 x 10^{-28}	$\begin{array}{c} 0.000\ 000\ \dots \\ 2.508\ 355\ x\ 10^{-2} \\ 7.860\ 106\ x\ 10^{-8} \\ -2.503\ 131\ x\ 10^{-10} \\ 8.315\ 270\ x\ 10^{-14} \\ -1.228\ 034\ x\ 10^{-17} \\ 9.804\ 036\ x\ 10^{-22} \\ -4.413\ 030\ x\ 10^{-26} \\ 1.057\ 734\ x\ 10^{-30} \\ -1.052\ 755\ x\ 10^{-35} \end{array}$	-1.318 058 x 10 ² 4.830 222 x 10 ⁻² -1.646 031 x 10 ⁻⁶ 5.464 731 x 10 ⁻¹¹ -9.650 715 x 10 ⁻¹⁶ 8.802 193 x 10 ⁻²¹ -3.110 810 x 10 ⁻²⁶	
Error Range:	0.04°C to -0.02°C	0.04°C to -0.05°C	0.06°C to -0.05°C	

RTDs change resistance based on the temperature

Image: Wikipedia/OMEGA

Multiple signal conditioning strategies can be used depending on the requirements and cost tradeoff

Image: Wikipedia

Thermistors also change their resistance with temperature

Image: Wikipedia

Conditioning happens with various resistor bridge/divider circuits

Displacement

Displacement measurements can be performed in absolute or relative ways with a WIDE variety of transducers

DCDTs/LVDTs are a differential transformer

DCDTs/LVDTs are a differential transformer

DCDTs/LVDTs are a differential transformer

Image: te.com

DCDTs include all of the necessary driving/conditioning electronics

Capacitive displacement sensors are very low noise and high resolution

Image: <u>lionprecision.com</u>

Eddy current sensors are less expensive and still relatively low noise

Pressure

Pressure transducers come in several types

- Absolute measure w.r.t. a perfect vacuum
- Gage measure w.r.t. external (atmospheric) pressure
- Vacuum measure pressures below atmospheric
- Differential measure difference between two points
- Sealed measure w.r.t. a sealed fixed pressure

Housings can vary from PCB mount to industrial

Pressure sensors are generally a deflection measurement based

technology

Image: <u>hydraulicspneumatics.com/instrumentationtoolbox.com</u>

Strain

Strain gages change resistance based upon their stretching/ compression

Resistance of a material depends on the area of contact, resistivity, and length

So tension increases resistance, compression decreases resistance

Image: Wikipedia

Most strain gage circuits are based on the Wheatstone Bridge

$$V_{O} = \left[\frac{R_{3}}{R_{3} + R_{4}} - \frac{R_{2}}{R_{1} + 2}\right] * V_{EX}$$

Image: National Instruments

The gage factor is the relative change is resistance with strain

$GF = \frac{\Delta R}{\varepsilon}$

Image: National Instruments

The quarter bridge is the least sensitive, but only requires one active element

Half bridges require only two active elements

$$\frac{v_0}{V_{EX}} = -\frac{GF \bullet \varepsilon}{2}$$

Image: National Instruments

The full bridge is the most sensitive arrangement

$$\frac{V_{O}}{V_{EX}} = -GF \bullet \varepsilon$$

Image: National Instruments

Measurement Type	Quarter Bridge		Half-Bridge		Full-Bridge		
	Type I	Type II	Type I	Type II	Type I	Type II	Type III
Axial Strain	Yes	Yes	Yes	No	No	No	Yes
Bending Strain	Yes	Yes	Yes	Yes	Yes	Yes	No
Compensation							
Transverse Sensitivity	No	No	Yes	No	No	Yes	Yes
Temperature	No	Yes	Yes	Yes	Yes	Yes	Yes
Sensitivity							
Sensitivity at 1000 µε	~0.5 mV/V	~0.5 mV/V	~0.65 mV/V	~1.0 mV/V	~2.0 mV/V	~1.3 mV/V	~1.3 mV/V
Installation							
Number of Bonded Gages	1	1*	2	2	4	4	4
Mounting Location	Single Side	Single Side	Single Side	Opposite Sides	Opposite Sides	Opposite Sides	Opposite Sides
Number of Wires	2 or 3	3	3	3	4	4	4
Bridge Completion Resistors	3	2	2	2	0	0	0
*A second strain gage is placed in close thermal contact with structure but is not bonded.							

Temperature plays a role as well though

$$rac{\Delta R}{R} = GFarepsilon + lpha heta$$

Where

- α = temperature coefficient
- θ = temperature change

A "dummy gauge" is often used for temperature compensation

Careful wiring and creative placement are often necessary

Image: <u>b2bicdesign.com</u>

Activity: Calculate the temperature measurements from the data included with the "Thermistor Calculation" activity

Due: 10/20

Assignment: Find something to affix strain gauges to for our next lab activity

Due: 10/25